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A one-dimensional bistable map in the presence of multiplicative Gaussian white noise is con-
sidered. An exact expression for the escape rate for asymptotically small noise strengths is derived
consisting of an exponentially leading Arrhenius factor and a pre-exponential factor that shows
a nontrivial dependence on the noise strength. The basic ingredients are a WKB ansatz for the
invariant density and a discrete-time version of Kramers’s flux-over-population method for the de-
termination of the rate. In the particular case of a piecewise linear map with additive noise, the
general rate formula takes a simple closed form and compares very well with numerical results.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

The noise induced escape of a system from a locally sta-
ble state is of great importance in many areas of physics,
chemistry, and biology [1-3]. For thermally activated
processes, both analytical and numerical methods exist,
allowing the determination of rates [1,4,5]. It is the prop-
erty of detailed balance that then simplifies rate calcula-
tions considerably. In nonequilibrium systems, detailed
balance is, however, in general violated with the conse-
quence that the determination of the invariant density
already becomes a nontrivial problem. For example, in
the asymptotic limit of weak noise, the invariant den-
sity, which is of particular importance for the rates, may
show various nonanalytic features that resemble, e.g.,
the behavior of the free energy of a system with a first-
order phase transition or caustics in wave propagation
[6,7]. Recent studies of two-dimensional Fokker-Planck
systems with caustics have shown that such singulari-
ties may drastically influence the rates and lead to dif-
ferent results than one would expect for systems with
detailed balance [8,9]. In contrast to one-dimensional
Fokker-Planck processes, one-dimensional noisy systems
in discrete time typically lack the property of detailed
balance [10]. As a consequence, no closed analytical ex-
pressions are known in general for the invariant densities
of such processes. However, in the vicinity of stable and
unstable fixed and periodic points of the noiseless dynam-
ics, the asymptotic behavior of the invariant density can
be investigated in the limit of weak noise by analytical
means, while for the global analysis effective numerical
methods exist [11,12].

Rates of escape from locally stable states have been
determined by the same methods for processes in discrete
time as for continuous time processes. For example, the
flux-over-population method [13,14] and the method of
mean first passage time [15] have been applied to noisy
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maps that only weakly deviate from a continuous time
system [16,17]. The Arrhenius factor, which represents
the exponentially leading weak noise contribution to the
rate, has been obtained by means of the most probable
path that connects the relevant locally stable state with
its basin boundary [18,19]. The basic idea of the reactive
flux method [20] was used for piecewise linear maps for
which the rate including all algebraic corrections in the
noise strength was found analytically from the decay of
a convenient initial state [21]. By means of this method,
decay rates of point attractors, strange attractors, and
strange repellers have been determined.

The present paper continues the study [10] of simple
one-dimensional maps that are disturbed by weak Gaus-
sian white noise. We utilize the flux-over-population
method and apply it to the escape from a locally stable
fixed point across an unstable fixed point. After a short
description of the used model in Sec. II, this method
is described in Sec. III. To apply it one must find a
flux-carrying invariant density that matches the fluxless
invariant density on the side of the initial stable state and
vanishes on the opposite side. A WKB approximation of
the fluxless invariant density is reviewed in Sec. IV. In
Sec. V the flux-carrying density is constructed and in
Sec. VI the central result for the rate is given in terms
of the noise strength and a few other quantities, one part
of which depends only on local properties and the other
one on global properties of the noisy map. For a piece-
wise linear map with additive noise, these quantities are
evaluated analytically and the resulting rate is compared
to the findings of Ref. [21] and numerical results. The
paper closes with conclusions.

II. MODEL

We study the one-dimensional dynamics of a particle
with coordinate z in discrete time n, which is given by
the combined action of a deterministic map f(z) and a
multiplicative random perturbation

Tnt1 = f(zn) + [D(zn)]V/?&n , (2.1)
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where §,, denotes identically distributed Gaussian white
noise with density )

P(€) = (we) /2 exp{—€7/c} -

Since the random part of the dynamics (2.1) is supposed
to be weak, the strength of the noise € is required to
be small and the noise coupling function D(z) to be
bounded. For the sake of convenience we assume symme-
try of the noisy dynamics (2.1) under z — —z, implying
f(—z) = —f(z) and D(—=z) = D(z). Further, the noise
coupling function D(z) is assumed to be smooth and ev-
erywhere positive. Finally, the map f(z) is required to be
smooth and to have three fixed points, an unstable one at
z,, = 0 and two stable ones at +x, with R4 as respective
basins of attraction. Accordingly, the slopes at the fixed
points are restricted by f/(0) > 1 and |f'(+z,)| < 1.

In the stationary state, the dynamics (2.1) is governed
by a unique invariant density W (x) obeying the master
equation

(2.2)

W) = [ Py Wy, (2.3)

where P(z|y) denotes the transition probability for a par-
ticle to move from y to = in one time step. From the noisy
dynamics (2.1) and the probability density of the noise
(2.2) one finds that

Plahy) = reD ()] /7 exp {~EHUEY 0

From the symmetry of f(z) and D(z) it follows that the
density W(z) is an even function of z.

III. FLUX-OVER-POPULATION METHOD

In this section we briefly describe the flux-over-
population method, which has been introduced for
continuous-time systems by Farkas [13] and Kramers [14]
and has been generalized to the case of discrete time in
Ref. [16]. In order to determine the rate at which par-
ticles go from one stable fixed point to the other, say,
from z, to —z,, one constructs a flux-carrying density
p(z). To compensate for particles that escape from R
to R_, new particles must be injected in R, and, at the
same time, arriving particles must be removed from R_.
Therefore, p(z) is the solution of the following modified
master equation:

o= [  Plaly)a)e)dy + S@),  (3.1)

where S(x) denotes the density of sources, which are lo-
cated at positive values of -, and 1—a(y) is the absorption
probability at the point y, given y is visited; for positive
values of y there is no absorption, i.e., a(y) = 1, while
for negative ones particles survive only with probability
a(y) < 1. The net flux J from R, to R_ is given by the
number of particles [;° S(x) dz that are injected into R
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at each time step. A rate k can then be defined as the
flux J divided by the population IV of R, :

ke L o Jo_SE)de (3.2)

N [T p(z)dx
This ratio coincides with the rate constant at which par-
ticles jump in the fluxless stationary state across the un-
stable fixed point from left to right and vice versa, if
all those particles that are injected into R, equilibrate
first within the vicinity of «, before they escape. Further-
more, particles must be removed from R_ only if they are
outside of the so-called barrier region, which is situated
around the unstable fixed point z,, = 0 and extends a few
l. = (¢ /{[f'(0))2 = 1})*/? in both positive and negative
directions. For points outside this region, the probability
of reaching the unstable fixed point z, is exponentially
small. According to the first condition, which requires
that only equilibrated particles escape, the source term
S(z) must vanish within the barrier region and accord-
ing to the second condition the survival probability a(y)
must be unity within the barrier region. In other words,
the number of particles is conserved in the barrier region
and, consequently, there the flux-carrying density p(zx)
obeys the same equation as does the fluxless invariant
density W (z):

p(z) = / P(z|y) p(y) dy for z in the barrier region.

(3.3)

Following the flux-over-population method, we do not
directly solve the master equation (3.1) with prescribed
sources and sinks. Instead we construct a flux-carrying
density that solves Eq. (3.3) in the barrier region and
matches the invariant density W(z) at positive values
of z:

p(z) = W (z) for sufficiently large z. (3.4)
For negative values of z the flux-carrying density is re-
quired to be negligibly small compared to the fluxless
invariant density W(z):

p(z) = 0 for sufficiently large negative x. (3.5)

Once p(z) is known, the density of sources S(z) readily
follows from the master equation (3.1). It yields, with
(3.2) for the rate [16,12],

[0 da f5 dy = [5° da [°, dy] P(aly) p(y)

k= I5° p(z) dz

(3.6)

The first double integral in the numerator represents the
flux of particles crossing the unstable fixed point from R
into R_, while the second one accounts for the backflow
from R_ into R,.

To summarize, we have to determine in a first step the
invariant density W (z) in Ry from the master equation
(2.3), then the flux-carrying density p(x) as a solution
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of Eq. (3.3), which approaches the required behavior
(3.4) and (3.5) outside the barrier region, and finally the
escape rate k according to (3.6). This will be carried out
in Secs. IV, V, and VI, respectively. Finally, we note that
also the survival probability a(y) can be determined from
the master equation (3.1) once p(z) is known, though the
explicit forms of both S(z) and a(y) are not needed.

IV. INVARIANT DENSITY

In this section we briefly summarize a WKB approach
for the determination of the invariant density W (z) from
Eq. (2.3); see Refs. [10,12] for details. Since W(z) is
needed for positive values of x only [see Eq. (3.4)] we
restrict ourselves to > 0 in this section. We start with
a WKB ansatz for the invariant density

W(z) = e V2 Z (z)e @/ (4.1)
where ¢(x) is the generalized potential, Z.(z) is the pre-
factor, and the factor e 1/2 has been extracted for the
sake of convenience. The generalized potential is required
to obey the functional equation

¢(z) = min{é(y) + [z — fF(¥)]*/D)} - (42)
Inserting the ansatz (4.1) and the transition probability

(2.4) into the master equation (2.3), one finds the follow-
ing integral equation for the prefactor:

oo [ 9y V@)
zi@) = [ T . (43)
where

V(z,y) :=¢(y) — d(z) + [z — F(¥)]*/D(y) . (4.4)

Note that in contrast to the generalized potential follow-
ing from Eq. (4.2), the prefactor Z(z) may still depend
on the noise strength €. In the following two subsections
we discuss how the generalized potential and the prefac-
tor are obtained from the functional equation (4.2) and
the integral equation (4.3), respectively.

A. Generalized potential

The value of y that minimizes the right-hand side of the
functional equation (4.2) for a given value of z is denoted
by g(z). It can be shown that Eq. (4.2) has a uniquely
defined solution ¢(x) under the following conditions: (i)
¢(x) vanishes at the stable fixed point z,; (ii) for each
z > 0 the series of iterates of g(x) converges to the stable
fixed point z,, i.e., g'(z) — =, for i — co and = > 0. The
explicit construction of this solution is equivalent to the
determination of the separatrix in a nonintegrable Hamil-
tonian system. Closed analytical expressions for ¢(z) are
thus available only for special maps f(z) and noise cou-
pling functions D(z). For an example see Sec. VI. For

an efficient numerical method we refer to [10,11], while
an analytical approximation scheme is given in [12]. The
qualitative features of the generalized potential ¢(z) and
the function g(z) are nevertheless well understood. For
example, at the stable fixed point * = x, the generalized
potential has a global minimum and g(z) considered as
a map has a stable fixed point. The functions ¢(z) and
g(z) possess series expansions about the fixed point z,,
which read, in leading order in (z — z,),

¢(z) = (z — z.)* {1 — [f'(.)]*}/D(z.),
9(z) =z, + (& — z,) f'(24) -

(4.5)
(4.6)

These series expansions represent the functions ¢(z) and
g(z) up to a point by with 0 < by < z,. In the inter-
val [0, bo] the generalized potential ¢(z) consists of the
minimal branches of a family of smooth functions ¢;(z),
i=1,2,...,

$(2) = mingi() ; (47)
see also Fig. 1. Each function contributes only on a
single interval I; to the generalized potential:

¢(z) = pi(z) for z € I; . (4.8)

The label 7 can consequently be chosen such that with
increasing values of ¢ the values of z € I; decrease. The
boundary points b; of the intervals I; = [b;, b;_1) then co-
incide with the intersection points of ¢;+1(x) and ¢;(z),
which are unique in [0, bo]. Beyond the point by the gen-
eralized potential continues smoothly and approaches the
form (4.5) near the stable fixed point x,. For large ¢, cor-
responding to small positive values ¢ € I;, the functions
¢i(x) approach straight lines,

$i(2) = $(z) — 2z — a*[F (O] F"(0) forz € I,
(4.9)

which touch the parabola

0.5 : : : :
0.4 -
0.3+ ze(x)
0.2+ -
0.1- o(x)
ERN
2 1 0 X s

FIG. 1. The generalized potential ¢(z) and the prefactor
Z(z) for the piecewise linear map (7.1) with parameter values
s =0,u =1.35,z, =1, and € = 0.001. For larger x values the
generalized potential continues to increase quadratically and
Z(x) stays constant. Both functions are symmetric about
z=0.
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£ —1 ,

(4.10)

at the points a*[f'(0)]* accumulating at z, = 0. The
quantities a* and ¢(0) are both positive and depend on
f(z) and D(z) in a global way. In general, their val-
ues cannot be determined analytically. For large ¢ the
approximation (4.9) yields, for the intersection points,

_ffo+1

SO

(4.11)

The function g(x) is also smooth on the intervals I;, but
in contrast to ¢(z) has discontinuities at the boundary
points b;. Within the same approximation that yields
Eq. (4.9) g(z) becomes piecewise linear

z | fOP-1

9 = 7o) T o

a* for x € I; (4.12)

for small positive = or, equivalently, for large <.

One can easily verify that Eqs. (4.5) and (4.6) are
solutions of the functional equation (4.2) for the linear
map

f(z) =z, + f(zs) (x — z,) (4.13)
and constant noise coupling function
D(z) = D(zs). (4.14)

Similarly, Egs. (4.8), (4.9), and (4.12) solve the func-
tional equation (4.2) for

flx) =f'(0)x (4.15)

and

(4.16)

We want to stress that though the global solution of
the functional equation (4.2) supplemented by the above
stated conditions (i) and (ii) as well as the local solution
near the stable fixed point are uniquely defined, the pre-
cise form of the generalized potential near the unstable
fixed point cannot be found alone from the local prop-
erties of the noisy map at the unstable fixed point. For
example, the sequence of boundary points b; is deter-
mined by the parameter a*, which depends in a global
way on the noisy map restricted to the domain of attrac-
tion of the fixed point z, [10,12]. In general, no analyti-
cal means are available to single out the particular local
solution of the approximating unstable linear map with
additive noise that matches the generalized potential of
the full nonlinear noisy map. The generalized potential
¢(x) is shown in Fig. 1 for a piecewise linear map with
additive noise as defined in Eq. (7.1) below. The discon-
tinuities of the slope of ¢(z) at the points b; are not very
pronounced, but still visible in this plot.
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B. Prefactor

Next we discuss the prefactor Z.(z) following from the
integral equation (4.3). The functional equation (4.2)
implies that V(x,y) in (4.4), considered as a function of
y, takes its minimal value zero at y = g(z). A saddle
point approximation of the integral equation (4.3) then
yields

2

—1/2
Z@) = (3D 5V @y =s))  Zlala)
(4.17)

This approximation is justified for small noise strengths
€ such that the integral in (4.3) is dominated by a small
neighborhood of the minimum of V(z,y) at y = g(z) in
which V(z,y) is smooth and variations of Z.(z) can be
neglected. The latter condition turns out to be always
satisfied, while cases in which the former ones are violated
are discussed below.

We first consider a vicinity of the stable fixed point
z,. Using in Egs. (4.4) and (4.17) the approximate
expressions (4.5), (4.6), (4.13), and (4.14) one obtains
a smooth prefactor Z.(z), which factorizes into an e-
and an z-independent part. The e-dependent factor is
fixed by the total normalization of the invariant density
J°o, W(z)dz = 1. Using the WKB ansatz (4.1) for small
noise strengths €, the normalization integral can be evalu-
ated in saddle point approximation about the stable fixed
points £x,. This yields, for the prefactor at z,,

_ [1=[f"(=a))?
Ze(z,) = m .

Consequently, Z.(z) is € independent in a whole neigh-
borhood of z,. Since the iterates of g(z) converge to-
wards z,, the solution for the prefactor near z, may suc-
cessively be continued to larger values of |z —z| by means
of (4.17). Within the validity of the saddle point approx-
imation on which Eq. (4.17) is based the prefactor is thus
completely independent of the noise strength e.

Close to the unstable fixed point z, = 0, Eq. (4.17)
simplifies with Eqs. (4.8), (4.12), (4.15), and (4.16) to
read Z.(z) = Z.(g(x))/f'(0). For the derivative one finds
that Z.(z) = Z.(g(z))/[f'(0)]?. Hence, in the limit z —
0 the derivative Z/(x) approaches zero much faster than
Ze(z). Therefore, the prefactor asymptotically assumes
constant values on the intervals I;:

(4.18)

Z(x) = Z*[f'(0)]* forz € I, (4.19)
where Z* is an e-independent positive quantity, which,
like a*, depends globally on f(x) and D(z) and is in gen-
eral not known in closed analytical form. Note that the
example shown in Fig. 1 is somewhat atypical because
the steps of the prefactor are of constant height also for
large values of . We finally mention that for z values
within a neighborhood of a point b; with an extension of a
few €/b;, a second minimum of V(z,y) exists besides the
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one at y = g(z) that contributes also notably to the inte-
gral in Eq. (4.3). As a consequence, on top of the steps
of Z.(z) at the points b;, cusps are superimposed that
are of the height Z*([f'(0)]~* + [f'(0)]"*"!) and width
of order €/b;; see Fig. 1. For b; = O(4/€) these cusps
merge. For values of x of the same order of magnitude,
also V(z,y) is no longer a smooth function of y within
a sufficiently large neighborhood of g(z). Therefore, the
saddle point approximation leading to Eq. (4.17) and its
solution (4.19) are no longer valid for z < O(y/€). For
small but finite noise strengths e the proper behavior of
Z¢(z) in this region will be found as a by-product in the
next section. On the other hand, in the weak noise limit
€ — 0, Egs. (4.17) and (4.19) are valid for all positive
values of  with the exception of the interval boundaries
b;. In particular, the constant Z* may be obtained in
this limit as

7* = lim lim[f'(0) Z(a’[f'(O)] ). (4.20)

71— 00 €
We finally mention that the singularities of ¢(z) and
Z(x) at the points b; compensate each other in the WKB
ansatz (4.1) and result for finite noise strengths € in a
smooth invariant density W (z).

V. FLUX-CARRYING DENSITY

In order to find a flux-carrying density p(z) that solves
Eq. (3.3) and satisfies the matching conditions (3.4) and
(3.5) we approximate the transition probability (2.4) for
small values of y by means of the Eqgs. (4.15) and (4.16),
yielding

P(zl|y) = [ﬂeD(O)]_1/2exp{——[%((00))y]2} . (5.1)

Using this approximation for P(z|y) and the linear ap-
proximation (4.9) for ¢;(z), a simple calculation shows
that

oo

pla) = 2Z0 3 [f(0)] Fem e

i=—o00

(5.2)

solves Eq. (3.3). Note that the sum on the right-hand
side converges for all x € R. Putting Eq. (5.2) back
into the full master equation (3.3) containing the exact
transition probability (2.4), one finds that for small val-
ues of = only small values of y contribute notably to the
integral in (3.3). This demonstrates the consistency of
the approximation (5.1) and the solution (5.2).

Next we consider small positive = values in the interior
of an interval I, , io > 1, which keep a minimal distance
of a few €/b;, from the boundaries b;, and b;, ;. Accord-
ing to (4.11) this is possible for values of = that are larger

than a few I, = (¢/{[f'(0)]> — 1})*/2. For such values of
z, only the term with ¢ = i contributes notably to the
sum in (5.2). Under the additional condition that z is
contained in a small but e-independent neighborhood of
z, = 0 where the approximations (4.9) and (4.19) are
valid, we find that p(z) in (5.2) coincides with W(z) in
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(4.1). For values of z that are in the same range but closer
to a boundary point of I;, say to b;,, than a few €/b;,, the
two terms with ¢ = 49 and ¢ = 79+ 1 contribute notably to
the sum in (5.2). Again, this reproduces W (z) as given
by Eq. (4.1) including the correct cusp of Z¢(z) at b;, as
mentioned below Eq. (4.19). Hence the expression (5.2)
solves the master equation (3.3) in the barrier region and
approaches the fluxless invariant density W (z) according
to Eq. (3.4).

For negative values of z as well as for positive ones that
are smaller than a few /., many terms contribute notably
to the sum (5.2), which can then be approximated rea-
sonably well by an integral over ¢ extending over the real
axis. With Eq. (4.9) this leads to

_ Zre )/ 7 D(0)
)= 2w | FOP -1

xerfc (— —[f’(O)]2 —1 m) ,

eD(0)
where erfc(z) = 2n~1/2 [®e~%"dy is the complemen-
tary error function. Using the asymptotic form erfc(z) ~

(5.3)

e /+/7z, valid for large values of z, the asymptotic be-
havior of p(z) for sufficiently large negative values of x
becomes

D(0) Z*e ®0)/e
(0)2 -1 2a*In f'(0) |z|

p(z) =~ 7 (5.4)

Therefore, p(z) approaches zero for negative x as re-
quired by Eq. (3.5). In summary, satisfying Egs. (3.3)-
(3.5), p(x) is a proper flux-carrying invariant density.

Finally, we return to the invariant fluxless density,
which is yet undetermined near the unstable fixed point
z = 0 for finite noise. For a symmetric noisy map, i.e.,
one with f(z) = —f(—=z) and D(z) = D(—=z), the sum
p(z) + p(—z) solves the master equation (3.3) in the bar-
rier region and according to the Egs. (3.4) and (3.5)
approaches the fluxless invariant density W(x) following
from the WKB approximation on both the positive and
the negative side of the unstable fixed point. Hence the
sum represents the invariant fluxless density for all values
of z,

W(z) = p(z) + p(—=) . (5.5)
Together with the WKB ansatz (4.1) and the local solu-
tion (5.2) for p(x), this expression for W (z) allows one
to determine the prefactor Z(z) for those small values of
z for which the saddle point approximation of Eq. (4.3)
does not hold. In particular, at the unstable fixed point
z,, = 0 one finds that

a

(f'(0)]> =1 a*Inf'(0) ’
(5.6)

where
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Z u”texp{—[u? — 1Ju"%v}

i=—00

ffoco diut exp{—[u? — 1ju—2v}
_ Zmlnu
X Z u”t exp{—[u? — 1Ju" v} .

i=—o0

K(u,v) =

(5.7)

Note that x(u,u?wv) = k(u,v) for all integer i. Closer
inspection shows that x(u,v) — 1 for v — 1 and arbi-
trary values of v. For very small values of z the prefactor
remains constant with minute maxima superimposed at
the points +b; which accumulate at z,, = 0; see Fig. 1.

VI. ESCAPE RATE

The population N = fooo p(z)dz in the denominator of
the rate formula (3.6) is readily determined. The flux-
carrying density p(x) is concentrated about the stable
fixed point x,, where it coincides with the fluxless invari-
ant density W (z). Since this is symmetric about = = 0
and normalized on the real axis, one finds that N = 1/2.
The flux J in the numerator of the rate formula (3.6)
is given in terms of integrals that get their main contri-
bution from the barrier region. It is therefore sufficient
to replace the transition probability entering these inte-
grals by the approximate expression (5.1). Details of the
calculation are given in the Appendix. For the rate one
obtains

z* _ D(0)
a* [f'(0)]* — 1

which is the central result of this paper. It is asymptoti-
cally exact for small noise strengths €. For a comparison
with numerical data see Fig. 2.

There are two globally defined, e-independent quanti-
ties ¢(0) and Z*/a* that enter the rate (6.1). The first
one represents the difference of the generalized potential
at the unstable and the stable fixed points of the deter-
ministic map f(z) and together with the noise strength
€ determines the exponentially leading part of the rate,
which corresponds to the Arrhenius factor in a thermally
activated process. The second quantity Z*/a* character-
izes the prefactor near the unstable fixed point z, = 0 in
the limit of weak noise according to (4.20). In contrast to
rates that follow from a one-dimensional Smoluchowski
equation in continuous time [1], the pre-exponential fac-
tor of the rate (6.1) depends on the noise strength.

Using the expressions (4.5) and (4.10) for the general-
ized potential and Eqgs. (4.18) and (5.6) for the prefactor,
the rate (6.1) may be rewritten as

(o, 2 A [#(=) W(0)
b= (f (©), eD(O)) 2r [ 1(0)] Wizy) * ¢?)

where A = In f’(0) represents the local Lyapunov expo-
nent of the map f(x) at « = 0. In this form, the rate

=0/,

k=€ (6.1)
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FIG. 2. The piecewise linear map from Eq. (7.1) with
s = 0.3, u = 3, and z, = 1. The dashed line represents
the identical map.

resembles the Langer formula [23] except that it contains
the factor k and that the curvature of the potential at the
unstable fixed point, which does not exist in the present
case, is replaced by ¢"(0).

VII. PIECEWISE LINEAR MAP

We consider a piecewise linear map with additive noise:

D(z) =1 for all z,

f(@) = zs+s(x —z5) for z > z,p, (7.1)

flz) = uz for0<z<z,,
where z,, is the matching point of the two linear pieces
Tm = T4(1 — s)/(u — s). For an example see Fig. 2.
The behavior of the map for negative z follows from the
symmetry f(—z) = —f(z). The slopes s and u at the

fixed points obey u > 1 and 0 < s < 1, where the restric-
tion s > 0 guarantees that Ry and R_ are the basins of
attractions of z, and —z,, respectively.

By means of a straightforward but somewhat tedious
calculation one can verify that the functional equation
(4.2) is solved by a generalized potential of the form (4.8)
with

(u? = 1)(1 - s?)
u?i(u? — s2) — 1 + s2

¢i(z) = (z — u'z,)? (7.2)
for £ > 0 and ¢(x) = ¢(—x) for z < 0; see Fig. 1. In
particular, ¢o(z) represents the series expansion of ¢(z)
about the unstable fixed point z,, which is valid for all
x € [bg, ). We recall that b; is the intersection point of

¢i(z) and ¢;y1(z) in [0, bo]. For large 7 b; reads

o 1-sY)(u+1)
T 2(u? — s2)uitt Lo

(7.3)

Hence, for large ¢ and = € I; the terms in Eq. (7.2) that
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are quadratic in  can be neglected. With the resulting
expression one recovers Eqs. (4.9) and (4.10) with

a* =z, (1 - 32)/(u2 — sz),

$(0) = 23 (u® — 1)(1 — s%)/(u® — %) .

For the function g(z) one exactly retrieves Egs. (4.6) and
(4.12) on the intervals [bg, 00) and I;, ¢ > 1, respectively.
In particular, g*(z) tends to z, for large ¢ and any z > 0
and hence together with ¢(z,) = 0 fulfills the conditions
guaranteeing a uniquely defined solution of the functional
equation (4.2), which are oulined in the first paragraph
of Sec. IV A. A more constructive approach to obtaining
the generalized potential is described in [12].

Inserting the above results for ¢(z) and g(z) into Eq.
(4.17), one obtains the following equation for the prefac-
tor valid in saddle point approximation:

Ze(z) = [¢"(x) /4" (9(z))]"/? Zc(9(2)) -

Note that ¢'(z) is constant on each interval I;. Closer
inspection shows that ¢(x) and g(z) are smooth at the
matching point x,, and that a complete neighborhood of
Tm is not contained in the range Im[g] of g(z). There-
fore, there are no further restrictions of the validity of
the saddle point approximation (7.6) due to the nondif-
ferentiability of f(z) at z = z,,, in addition to those men-
tioned in Sec. IV B. Since g(x) maps I, into itself and
g'(z) — =, the saddle point approximation (7.6) yields a
constant prefactor Z.(x) on Ip. Taking into account Eq.
(4.18) and g‘(x) — =z, the iteration of Eq. (7.6) yields

Ze(z) = \/¢"(x)/2w. With (4.8) and (7.2) it follows that

(7.4)
(7.5)

(7.6)

1 (u? —1)(1 — s2)
Z, =u""y— =
(@) = u dmu? — 52 — (1 — s2)u—%

forz € I; .

(7.7)

Within the validity of the saddle point approximation
(4.17), i.e., except for neighborhoods of the interval
boundaries b; with the extension of a few b;/¢, we thus
find a piecewise constant prefactor; see Fig. 1. A com-
parison with (4.19) implies that

Z" = v/ ¢(0)/(4n=3) ,

where ¢(0) is given in (7.5).

To summarize, in spite of the simplicity and the pe-
culiarities of the piecewise linear map (7.1), both the
generalized potential ¢(z) and the prefactor Z.(z) ex-
hibit just the typical properties predicted in Sec. IV; see
Fig. 1. The only difference is that for more general noisy
maps the generalized potential is not strictly parabolic
on all intervals I; and the prefactor is not constant in
the interior parts of the intervals where the saddle point
approximation holds.

Making use of (7.4), (7.5), and (7.8) the escape rate
(6.1) takes the form

(7.8)

k= \/e/[and(0)] e~ ¢/ (7.9)

For sufficiently small noise strength e this rate formula is
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FIG. 3. The relative difference [kth — knum|/ken of the the-
oretical and numerical escape rates versus log,,(€) for the
piecewise linear map with additive noise (7.1) at the param-
eter values z, =1,s =0, v =15 (0),u =2 (A), and u = 4
(x). The theoretical rate is given by (7.9). knum is calcu-
lated from (3.6) with a numerical solution p(z) of the master
equation (3.3) with boundary conditions (3.4) and (3.5). For
sufficiently small noise strengths € the agreement between the-
ory and numerics is excellent.

in excellent agreement with numerical results as shown
in Fig. 3. The identical expression has been obtained by
means of a reactive flux method in the limit of weak noise
in [21].

Closed analytical results as in this section can be de-
rived also for negative values of s in Eq. (7.1) or for
bistable maps f(z) with more than three linear pieces
and piecewise constant noise-coupling functions D(z).

VIII. CONCLUSIONS

In this paper we adopted the flux-over-population
method of constructing rates of escape from a locally
stable state across an unstable fixed point for one-
dimensional systems in discrete time. The decisive quan-
tity of this method is a flux-carrying invariant density
that matches the fluxless density near the initial state
and vanishes beyond the unstable fixed point. We con-
structed the flux-carrying invariant density explicitly and
determined the escape rate from it.

In the weak noise limit this rate has an exponentially
leading contribution that resembles the Arrhenius factor
of a rate of a thermally activated process. Additionally
there is a prefactor that decreases with the square root
of the noise strength. This is unfamiliar from the point
of view of one-dimensional processes in continuous time,
although there are indications that such behavior may
also occur for two-dimensional Fokker-Planck processes
without detailed balance.

From the flux-carrying invariant density the fluxless
invariant density may easily be constructed. If the latter
is represented in a WKB form it reproduces the known
singularities of the generalized potential governing the
exponentially leading part and of the prefactor [10,11,22].
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Moreover, we found analytic expressions of the prefactor
in the close vicinity of the unstable fixed point that are
not yet available from a WKB analysis. The value of this
prefactor at the unstable fixed point decreases also with
the square root of the noise strength being the reason for
the same effect for the prefactor of the rate.

For the sake of simplicity, in this paper we restricted
ourselves to the discussion of noisy maps that are sym-
metric about the unstable fixed point. This assump-
tion may, however, easily be dropped [12]. For suffi-
ciently weak noise the flux-carrying density decreases fast
enough beyond the unstable fixed point such that there
the nonlinear contributions of the map, which may break
the symmetry, are of no importance. A similar argument
applies for a possible asymmetry stemming from the noise
coupling function D(z). Consequently, the flux-carrying
density given in this paper holds also for nonsymmet-
ric noisy maps. In this way there belongs to each lo-
cally stable state a flux-carrying density. The rates of
escape from these states follow from the same rate for-
mula (6.1), where the global constants Z*/a* and ¢(0)
are different for the different rates. The fluxless invariant
density is again given by a linear combination of the flux-
carrying densities belonging to the different locally sta-
ble states; cf. Eq. (5.5). The corresponding weights are
uniquely determined by the total normalization and the
condition that the net flux vanishes at the unstable fixed
point. The generalization of this method to maps with
more than two stable states is straightforward. For peri-
odic maps a fluxless invariant density, however, need not
exist.
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APPENDIX: CALCULATION OF THE FLUX J

In order to determine the flux J in the numerator of
(3.6) we make use of the properties (3.4), (3.5), and (5.2),
the flux-carrying density p(z), and the behavior of the in-
variant density W (x) as discussed in Sec. IV. In a first
step we show that in the numerator of (3.6) only small =
and y values contribute notably for small noise strengths
€. Then, in this region the approximations for the tran-
sition probability (5.1) and for the flux-carrying density
(5.2) are introduced. Finally, it can be shown that these
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approximations can be extended over the entire domains
of integration with negligible effect on the flux J. We
thus find that

sizz[/ do [Ty~ [ d$/ dy]
cor{ e )

where we introduced u = f’(0). Equation (A2) can be

recast into
—uy
[ [ o[ ]
—uy

X""p{ 2aez[>( )_1]y e;m)}

(A3)

and then, by exchanging the order of integration, into

[/ T /_mdy]

a*[u® — 1]y
— . A4
xe"p{ eD(0) & eD( ) (A4)
Carrying out the integrals over y, we find that
eD(0)u z?
= d
=g | _or{- 5w )
2a*[u® — 1]z
[ ‘e""{“mﬁ}] o

Then the z integration can be performed and the flux
(A1) takes the form

_ \/;D(O) Z* __¢(0)/6 i uz—la*z
7= 2a* [u? — 1] ¢ Z P eD(0) u®

i=—o00

u?2 -1 a*?
— exp _—eD(O) 26D .

Rewriting the infinite sum as lim;_, Ziz_l and taking
into account that u = f’(0) > 1, the final result for the
flux becomes

=y

(A6)

e=*®/<  D(0)
2 a* [fI(O)]2 —

(A7)
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